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The importance of these processes comes from two facts:

» there is a large number of physical, biological, economic,
and social phenomena that can be described in this way,
and

» there is a well-developed theory that allows for doing the
computations and obtaining explicit results...



Let S be a finite or countable set (number its elements using i = 1, 2,
Let (Xn)nen be a SP with X, : (2, A, P) — S for all n.

Definition: (X,) is a Markov chain (MC) on S &
]P)[Xn—H :j|X0, X1 oo ,Xn] = P[XH—H :_/|Xn] vn Vj

Remarks:

» The equation above is the so-called Markov property. It
states that the future does only depend on the present
state of the process, and not on its past.

» Sis the state space.
» The elements of S are the states.



Definition: The MC (X,) is homogeneous (~ HMC) <
P[Xp1 = j|1Xn = ] =P[X; = j|Xo = i] VnVij.

For a HMC, one can define the transition probabilities
pl] = P[XH-H :j|Xn = I] vjvja
which are usually collected in the transition matrix P = (pj).

The transition matrix P is a "stochastic matrix", which means
that

» p;j €[0,1] forall /,j.
> > pj=1foralli

In vector notation, P1 = 1, where 1 stands for the vector of
ones with the appropriate dimension.



Let X1, X5, ... beiid.,withP[Xi=1]=pandP[Xi=—-1]=qg=1-p
Let Y; := >, X; be the corresponding random walk.

~ (Yp) is a HMC on S = Z with transition matrix

g p
P = a 0 p



Let Xi, Xo,...beiid.,withP[X;=1]=pandP[Xi=—-1]=qg=1-p
Let Yo := k € {1,2,...,m— 1} be the initial state.

Let Y,H_1 = (Yn + Xn+1)H[Yn¢{0,m}] +Y, ]I[Yne{O,m}]-

~ (Yp)isaHMC on S ={0,1,..., m} with transition matrix



Let Xi, Xo,...beiid., withP[X;=1]=pandP[X;=0]=qg=1—p.
Let Y; := 0 be the initial state.
Let Y,H_1 = (Yn + 1)H[Xn+1=1] 4+ 0 x H[Xn+1:O]-

~ (Yp) is a HMC on S = N with transition matrix

o ...
Z g p 0
P: qg 0 0 p 0



Let Y, be the number of clients in a queue at time n (Yy = 0).
Let X, be the number of clients entering the shop between time
n—1and n (X, iid., with P[X, =il = pi; Y 2o pi = 1).
Assume a service needs exactly one unit of time to be
completed.

Then
Yot = (Yo + Xo — 1) Ly,0p + XnLjy,=0p

and (Yp) is a HMC on S = N with transition matrix

Po Py
P B 5
P= o 7 Po Pt P2 - .

AN



Let X, be the number of units on hand at the end of day n
(Xo = M).

Let D, be the demand on day n (D i.i.d., P[D, = i] = pj;
Yo Pi=1).

Assume that if X, < m, it is (instantaneously) set to M again.

Then, letting x™ = max(x, 0), we have

Xn1 = (Xn — Dni1) " Ipxyom + (M — Dig1) ™ Iixy<m)s
and (X,)isaHMC on S ={0,1,..., M} (exercise: derive P).

Questions:

» if we make 12$ profit on each unit sold but it costs 2$ a day
to store items, what is the long-run profit per day of this
inventory policy?

» How to choose (m, M) to maximize profit?



Assume that from one generation to the next, families change
their income group "Low", "Middle", or "High" (state 1,2, and 3,
respectively) according to a HMC with transition matrix

6 3 1
P = 2 7 A .
1 3 6

Questions:
» Do the fractions of the population in the three income
classes stabilize as time goes on?

» If this happens, how can we compute the limiting
proportions from P?



We let P = (pj;), where p; = P[Xq = j| Xo = 1].
Now, define P(") = (p{"), where p” = P[X, = j|Xo = .

What is the link between P and P(M?
~» Theorem: P(N — pn

Proof: the result holds for n = 1. Now, assume it holds for n.
Then (P(”+1 )i = P Xns1 =jI1Xo = 1] = 2 P[Xnp1 =J, Xn =

k| Xo =il = >k P[Xns1 = j| Xn = k, Xo = I]P[Xn = k| Xo = 1]

= 2k P[Xn+1 = j|1 Xn = KIP[ Xy = k| Xo = i] =

S (PO (PM)Y g = (PMP); = (P"P);j = (P™1);, so that the
result holds for n+ 1 as well. O



Of course, this implies that
plntm) — prtm — pnpm — p(0) p(m) that is,

PXpim = j1Xo = ] = > P[Xn = k|1 Xo = (|B[Xen = jI Xo = kI,
k

which are the so-called Chapman-Kolmogorov equations.



Clearly, the distribution of X}, is of primary interest.

Let a(" be the (line) vector with jth component
(aM); = P[Xs = j].
~> Theorem: a(") = g0 p7,

Proof: using the total probability formula, we obtain (a("); =
P[Xn = j] = Y P[Xp = j|Xo = KIP[Xo = K] = >, (a9)k(PM)
= (a@P); = (al® P");, which establishes the result. O

This shows that one can very easily compute the distribution
of X, in terms of

» the distribution of X,, and
» the transition matrix P.



Proposition: let (X,) be a HMC on S. Then

PXy =i, Xo = ia,..., Xn = in|Xo = lo],
HJ)[Xm+1 = i1aXm+2 = i2a cee aXm+n = in‘Xm = iO]a

and
PXmt1 = i1, Xz = I, .. s Xmen = In| Xo = Jo, X1 = Js, .
all are equal to pjj, Piiy - - - Pi,_ip-

Proof: exercise...
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Quite similarly as for the optional stopping theorem for
martingales, P[X,;1 = j|Xn = i] = pj does also hold at stopping
times T. This is the so-called “strong Markov property" (SMP).

An illustration: for 0 < p,g < 1 (p+ g = 1), consider the HMC
with graph
Let T be the time of first visit in 2 ~ P[X7.1 = 1| X7 = 2] = q(= p21).

Let T be the time of last visitin 2 ~ P[X7,1 =1 X7 =2] =g~ =0
(# p21), which shows that the SMP may be violated if T is not a
ST.



Of particular interest is also the total number of visits in j, that is
Ni = 22020 lxe=i1-
To determine the distribution of N;, let

» T; =inf{n € Ng|X, = j}, which is the time of first visit in j

(if Xo # j) or of first return to j (if Xy = j), and

> fi =P[T; < 00| Xp = 1].
Let 6, be the time of kth visit of the chain in j (if there are only k
visits in j, we let 8, = oo for all ¢ > k +1 and 6,1 — 6, = oo for
all ¢ > k).

Then, fork =1,2,...,
P[N; = k|Xo = il
= P[0y < o00,...,0k < 00,0k11 = 00| Xg = 1]
= P[0y < 00| Xy =1]...Pllgr1 = 00|01 < 00,...,0k < 00, Xog = 1]
= P[61 < 00| Xo = ](P[61 < 00| Xo = J1)}"P[61 = 00| X0 = ]]

k—1
= fifi (1 —1f).



Working similarly, one shows that

. [t —f;) if k>0
P[N; = k|Xo = 1] { - ¢ k—o

fori#j,and P[N; = k|Xo =] = f'(1 = f;), k>0.

Hence, letting rj = E[N;| Xy = i] be the expected number of
visits in j when starting from /i, we have, for i # J,

rj = ZK}P’[N_k\XO_I]_f,/ Zkfk 1_
and

rj = ZKP[N_k\xo_/]_m—z;, Z kf 1: f“.
k=0 k=1 )

j/’




Similarly as for the transition probabilities p;;, the
rj = E[N;| Xy = i] will be collected in some matrix R = (r).

Note that

rj = E[Z Iix.=n1Xo = /} = ZE[/[XF/]‘XO =1

= ZIP’[Xn =jiX =i = Zp“’) Z (P")j,
n=0
which shows that

R= i P".
n=0
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Definition:
» the state j is transient < f; < 1.
» the state j is recurrent < f; = 1.

Remarks:
» jtransient < r; < oo; j recurrent < rj = oo.
» jtransient = P[T; = 00| Xy = j] > 0 = E[T;| Xy = j] = 0.
» jrecurrent = P[T; = oo|Xo = j] = 0, but E[T;| Xo = j] can be
finite or infinite...

~» Definition:

» jis positive-recurrent <
Jis recurrent and E[T;| Xy = j] < 0.
» jis null-recurrent < jis recurrent and E[T;| X = j] = oo.



Definition:
j is accessible from i (not. i — j) & 3n € N such that p,(j”) >0

(that is, there is some path, from j to j, in the graph of the
HMC).

Letting aj = PP[go to j before coming back to /| Xy = /], the
following are equivalent
> i — .
3n € N such that (P"); > 0.
f,'j > 0.
ojj > 0.

v

v

v




Definition: i and j communicate (not.: i <> j) < i —jand j — .

This allows for a partition of the state space S into classes
(=subsets of S in which states communicate with each other).



~ two types of classes:

» Cisopen < VieC,thereis somej ¢ C such thati — j.
» Cisclosed & Vi€ C, thereisnoj ¢ C such that i — j.



There are strong links between the types of classes and the
types of states...

Proposition: all states in an open class C are transient.

Proof: let i € C. Then there is some j ¢ C such that i — j (and
hence j - i). We then have

1ty = P[Ty = oolXo = 1]
> IP[go to j before coming back to i| Xy = /]

:Oz,'j>0,

so that / is transient.



What about states in a closed class?

Proposition: /et C be a closed class. Then if there is some
recurrent state i ¢ C, all states in C are recurrent.

Proof: let j € C. Choose r, s € N such that (P"); > 0 and
(P®);i > 0 (existence since i <+ j). Then j is recurrent since

o= Y (PMy= > (PMj=> (PPP);
n=0 n=r+s m=0
= D > (POR(P™ke(P )y
m=0 k/(
> ) (P)i(P™i(P);
m=0

= (Ps)j/f,','(Pr),'j = oQ.



Proposition: /et C be a closed class. Then if there is some
recurrent state i € C, all states in C are recurrent.

This result shows that recurrent and transient states do not mix
in a closed class. Actually, it can be shown that:

Consequently, a closed class contains either
» transient states only, or
» positive-recurrent states only, or
» null-recurrent states only.



The following result is very useful:

Proposition: /et C be a closed class, with #C < oc. Then all
states in C are positive-recurrent.

How would look a closed class with transient states?

An example: with p + g = 1, consider the chain
If p > %, one can show all states are transient...



A last result in this series:

Proposition: /et C be a closed class, with recurrent states.
Then f; =1 foralli,jcC.

Proof: let /,j € C. Since j is recurrent, f; = 1, so that
0=1—f;=P[Tj=oc0|X =]
> P[go to i before coming back to j,

and then never come back to j| Xy = J]
= (1 = fy).

Hence, «;i(1 — f;j) = 0. Since a;; > 0 (j — i), we must have
fi = 1.
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In this section, we describe a systematic method that allows for
computing the matrices

R = (ry)

where
rj = E[N;|Xo = i]

is the expected number of visits in j when starting from /, and
F=()

where
fij = IP’[Tj < oo|Xo = 1]

is the probability that, being in i, the HMC will visit j in the
future.



The first step consists in renumerating the states in such a way
the indices of recurrent states are smaller than those of
transient ones. (remark: we assume #S < o in this section)

Consequently, the transition matrix can be partitioned into
Prr Prt )
P= ,
( Py Py
where Py is the transition matrix from transient states to
recurrent ones, P, that between recurrent states, and so on...

Of course, we will partition accordingly

R+ R Fr F
R— rr rt ) d F-= ( rr rt )
< Rtr Rﬁ an Ftr Ftt



Actually, P = 0.

Indeed, if i is recurrent and j is transient, i belongs to some
closed class Cy, while j belongs to another class C» (otherwise,
Jj would be recurrent as well). Hence, i % j, so that p; = 0.

Clearly, this also implies that R,; = 0 and F,; = 0.



We start with the computation of

R:(Rrr th>:<Rrr 0 )
Ry Ru Ry Ry )

Previously, we showed that R = >",", P”, so that

R, ? 0
R= = 9 )
(Rtr Rtt) Z<7 P[r') <? Zn—oP{}>

which yields that

Re=> Pi=1+> Pi=I1+Pyy Py '=I+PyRy,

n=0 n=1 n=1

so that Ry = (I — Ptt)_1



It remains to compute the entries r;, where j is recurrent.
~ Proposition: for such entries, (i) rj = oo ifi — j and
(i) rj =0 ifi % j.

Proof:

(i) in the previous lecture, we have shown that r; = f;/(1 — f;)
and rj = 1/(1 — f;), so that rj = f;r;. Now, if i — j, we have
fi > 0, so that ry = f;rj = f;j X co = oo (since j is recurrent).

(ii) is trivial, since i -~ j implies that N;|[Xo = /] = 0 a.s., which
yields rj = E[N;j|Xo = i] = 0.



We now go to the computation of

F_<Frr Frt)_(Frr O)
Fir  Fut Fir Fu )

(l)Frr:?
|fi¢y>j,f,'j:P[Tj<OO|Xo:i]:0.

If i — j, then we must also have j — i (indeed, j - / would
imply that / belongs to an open class, and hence that i is
transient). Therefore, i and j are recurrent states belonging to
the same class, so that f; = 1 (cf. previously).



(i) Fy =7

By inverting
1
{ T
fi
Ty
we obtain 1
{ fj=1- 5
r
fj = #,
J

which does the job since R = (rj) has already been obtained...



(iii) Fyr =7

Complicated...(discussion).

We start with a lemma:

~» Lemma: let i be transient. Let j, k be recurrent states in the
same class C. Then fjj = fi.

Proof: since /, k are recurrent states in the same class, fy = 1.
Hence,

fix = P[Tx < 0o|Xp = i] > IP[go to j, then go to k| Xg = i] = fjfx = fj.
Similarly, we obtain f; > f, so that fy = f; O

Therefore, it is sufficient to compute P[T: < oo|Xy = /] for each
transient state / and for each class of recurrent states C.



To achieve this, consider the new HMC (X,,) on S, for which
» the transient states of S remain transient states in 9, and

» each class Cx (k = 1,..., K) of recurrent states gives birth
to a single recurrent state k in S.

The transition matrix P of (X,) is
p:<l?ff 'r?rt>:<IK 0)
Py P B Py )’
where By = P[X; = k|Xo = 1] = 30, PIX1 = j1Xo = 1].
Now, letting T¢, := inf{n € N|X, € Cx} = inf{n € N|X, = k},

the previous lemma states that gix = P[T¢, < oo|Xp = i] is the
common value of the fj’s, j € Cy.



~» Proposition: let G = (gix), where gix = P[T¢, < 0o|Xp = .
Then G = RnB.

Proof:
gk = P[Te, < oolXo=1]= lim P[X, € Ck|Xo = i]
= lim P[X, = k|Xo =i] = lim (P").
n—oo n—oo

Now, it is easy to check that

" lk O

n __

P ah pp)

where B(") = B+ PyB+ P2B + ...+ Py 'B. Hence,
G = lm B" (B+ PyB+PiB+ ...+ P} 'B)

= lim
n—oo n—oo

- (i P{,’)B — RyB.
n=0



A and B own together 63$. They sequentially bet 1$ when flipping
a (fair) coin. Let X, be the fortune of A after game n.
The game ends as soon as some player is ruined.

~» (Xn) is @ HMC with transition matrix

1]0 o 0 0 o0]0O0
12/ 0 1/2 0 0 0 | 0
012 0 1/2 0 0| O

P=| 0|0 12 0 1/2 0| 0
olo0 0 12 0 1/2] 0
olo o 0 1/2 0 |1/
0l0 0 0 0 0 1




We first have to renumerate the states in such a way recurrent
states come before transient ones:

~ (Xp) is @ HMC with transition matrix

1 0[]0 0 0 0 0
o 1/0 0 0 0 O
12 0] 0 1/2 0 0 0O
P=| 0 o0 |1/2 0 1/2 0 0
0O 0|0 12 0 1/2 0

O 0|0 0 1/2 0 1/2
o 12/ 0 0 0 1/2 0



The computation of R is immediate, but for the block Ry, which
is given by Ry = (I — Py)~"

1 -p o 0 0N patgy
1 1
=2 1 —3 0 0 3323 3
I O R ~|i23271],
0 o -4 1 -1 EEEE
0 0 0 -3 3513 3

from which we learn, e.g., that E[Ng|Xo = 3] = r3s = 2, or that
the expected number of flips required to end the game, when
starting from state 3, is

6
Z I3j = 8.
j=2



The computation of F is immediate, but for the blocks F; and F.
The latter, in this simple case, is given by F;r = G = RyB = RyPy

W[=WIN =L WHW|UT
WINWIA N w|oow|
— N WnNhN =
W00 N WIHWIN
WOl = WINW|—
O O O OoON=
N=O O O O
O =W =N =W N1
O O NN =W = =

from which we learn, e.g., that the probability A loses the game,
when he starts with 2$ (=state 3), is

fro = <.
30 3



Remarks:

» These results were previously obtained, in the chapter
about martingales, by using the optional stopping theorem.

» It should be noted however that the methodology
developed in this chapter applies to arbitrary graph
structures...
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Let0 < p,g <1 (with 0 < p+ g < 2) and consider the chain
We are interested in al” = (P[X, = 0], P[X, = 1]) for large n.
We have a(” = a®P" and

1 1-p—q) _
aVP = (6,1 £)[/OHI(Z Z>+( pp+qq) (—pq qp )]

so that

lim a(™ =(1-9 < ) 9 __k )
n—o0 p+a' p+q

which does not depend on a(® (not so amazing! Why?)



Let (X,) be a HMC with transition matrix P.

Definition: (X,) admits a limiting distribution <
» I such that lim,_,o a™ = r,
» m; > 0forall jand 71 = ijj- =1,

» 7 does not depend on a9,

Remarks:
» 7 is called the limiting distribution.
» The existence of m does only depend on P.
» Not every HMC does admit some limiting distribution:



Consider the chain
We have

1/1 1 (G DA B
(n) — 40) pn _ )|~
al=atPr=(G1 5)[2<1 1>+ > (1 1>]
(Y WLyl
== (GHEDE =2z + D E- ).
which does only converge for £ = % Hence, this HMC does not

admit a limiting distribution...




How to determine the limiting distribution (if it exists)?

~» Theorem 1: assume the HMC is (i) irreducible (that is,
contains only one class) and (ii) non-periodic. Then all states
are positive-recurrent < The system of equations

XP = x

x1 =1
has a nonnegative solution (and, in that case, x = 7 is the
limiting distribution).

Remark: 7 is also called the stationary (or invariant

distribution). This terminology is explained by the fact that if

one takes a(® = r, then

an = g0 pn— g0 pn-1 — g0 pn-2 — = — 50 p = 500 for all n.



How to determine the limiting distribution (if it exists)?

~» Theorem 2: assume the HMC has a finite state space and
that P is regular (that is, 3n such that (P"); > 0 for all i, j). Then
it admits a limiting distribution, which is given by the solution of

xXP = x
x1=1.

~» Theorem 3: assume the eigenvalue 1 of P has multiplicity 1
and that all other eigenvalues \;(c C) satisfy |\;| < 1. Then the
conclusion of Theorem 2 holds.



A simple (artificial) example...

Consider the chain with transition matrix

: g
P:<01>.

Clearly, Theorem 2 does not apply, but Theorem 3 does.
The limiting distribution is given by

3 1
(71'0,71'1)(6 ?)Z(?To,ﬂ'1), mo+m =1, m>0, m >0,

which yields © = (mg, 1) = (0, 1)... which is not very surprising.



